提示信息

第3讲 立体几何中的向量方法

爱的寄语 已关注

 

第3讲 立体几何中的向量方法1.(2014嘉兴高三期末)如图,长方体ABCDA1B1D1中,AB=4,BC=5,CC1=,P是AD1上一点,E是PC的中点.(1)求证:AD1∥平面BDE;(2)当AD1⊥DP时,求平面DCP与平面BCP所成锐二面角θ的余弦值.(1)证明:连接AC交BD于F,则F为AC的中点,连接EF,则EF为△PAC的中位线,所以EF∥AD1,AD1⊄平面BDE,EF⊂平面BDE,所以AD1∥平面BDE.(2)解:法一 连接BC1,作CQ⊥BC1于Q,又BQ⊥CD,所以BQ⊥平面CDPQ,作QH⊥PC于H,连接BH,所以∠BHQ就是平面DCP与平面BCP所成锐二面角θ,在Rt△BCC1中,CQ⊥BC1,BC=5,CC1=,所以BQ=4,CQ=3,在Rt△PC..

  • 用微信扫一扫,拍照回复
  • 爱的寄语 关注 已关注

    椅圈中学 · 老师最近一次登录:2020-04-18 10:12:37     

    暂时还没有签名,请关注我或评论我的文章
    请登录后评论

    登 录

    ×
    分享到朋友圈